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Received 17 December 1976 

Abstract. A new explicit expression of linear momentum flux for an isolated radiating 
system of N bodies (or for a perfect fluid) in the linear approximation within general 
relativity is obtained up to higher orders. 

1. Introduction 

In two earlier papers (Dionysiou 1974, 1975) the linear momentum flux up to octupole 
order is given by 

where Pa is the total outflux per unit time of the ath (Cartesian) component of linear 
momentum. Greek indices run from 1 to 3, Latin indices from 0 to 3 and we set 
G = c = 1. The dots mean derivatives with respect to time. Also 

DUB = l a p  - 38 I W  QS 

is the quadrupole moment tensor and 

I"@ = 1 mx,xS 
m 

(3) 

is the mass tensor of the system. 
Particularly we note that the previous results (Bonnor and Rotenberg 1961, 

Papapetrou 1962, Peres 1962) are similar but less general than equation (1) (Bonnor 
and Rotenberg 1961, Dionysiou 1975). 

2. Linear momentum flux 

In this paper we generalize equation (1). In a weak-field approximation to general 
relativity, far outside the source, the field equations can be written in the form 

(4) 
Im ij n y,lm= 1 6 ~ @ $ ,  

where @ R  = (Tj + ti")N are the dominant Newtonian terms of the Landau-Lifshitz 
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complex 0" = (-g)(T" + t"). Here, we impose on y" the gauge condition yi:.= 0, where 

J-gggij  = ,,ij ij = 7) U + h U, 

The solution of equation (4), which satisfies the outgoing radiation condition, is 

IhiJ(cc 1 

and vi' the Minkowskian metric. Ordinary differentiation is denoted by a comma. 

(Misner er a1 1973, p 996): 

or 

yiJ(x,  t )  = - j e ~ ( x ' ,  t - r  +(n . x')) dx'+O(r-2), (5b) 
r all spacc 

where Ix -x'l= r - n . x'+ O(r-'), r = 1x1 and n = x / r  is the unit vector in the direction of 
propagation. 

Equation (56) can be written as an expansion 

and if the motion of the particles is sufficiently slow, equation ( 5 c )  may be replaced by 
an expansion 

One can put the conservation laws with the help of the special form 

Ox,j = 0. (6) 
Applying equation (6) one obtains the identities: 

a*@:'- a'@;@ 
at2 ax&ax;, 

-=- 

We suppose 0" spatially confined as it is required by equation (5a) (Misner et a1 
1973, pp 989-1001); then the first and second terms on the right-hand side of equation 
(7b) are seen to be zero, when we integrate over all space by an application of Gauss' 
theorem. 

Hence from equations (7a) and (7b) follow: 

where @$ under the integrals mean W$(x', t - r ) .  
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Using a transverse-traceless (m) gauge condition i.e. (Misner etall973, pp 946-9) 
hi'=(), haBB = 0, ha" = O  

then the gravitational radiation is completely described by the n part of the metric 
perturbation h". Hence, since 

h ij = yij  - 1 2r) U y + non-linear expressions 

we have h&= y&. 

we have 
Since 7% is the gauge invariant m part of yi', then using equations ( 5 4 ,  (8) and (9) 

x e;px:,n:, . . . x:. & ' + ~ ( r - ~ ) ,  I 
where 

and 

(Dionysiou 1974), or 

( t  -r)+o(r-2), 8' I a p I I K  ,...rr ? a x ,  t )  =; f nt,,nx2 . . . n""- 
' - 0  at2 'IT 

where 
I"@ = m x d p ,  

m 

and 

With the aid of equations (12), (13) and (14) we can define 
D ~ B x I ~ z . .  .I.. - - I a B * 1 * 2 . . . K v - -  ;aadw" 1"2..."" 

9 

which readily gives the following properties: 
Daa"l"'..."u = 0 
D$I"z-."v = I%$l"Z-J% 

whose 'm' projection is on the a, indices. 
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Substituting equation (17) into equation (1 l ) ,  one gets that 

where D%= PayDy6PB6 - iPaBPysDys,  PUB = 6"' -nanB, na = x " / r  (Misner et a1 

For the outflux of linear momentum one may concentrate on the flux of the radial 
1973, pp 989-1001). 

component na (Bekenstein 1973) 

P" = I O:\r*n, dS1, 
sphere 

where O:\ is the effective stress-energy tensor for the outgoing waves, i.e. 

where '( )' denotes an average over several wavelengths (Misner et a1 1973, pp 

Puttingequation (18) into equation (20)  it follows that (Epstein and Wagoner 1975) 
989- 100 1). 

s z W = y (  1 n,,n,, . . . 87n 

The integral in equation (19) being taken over a large sphere of radius r, with n, the 
three components of the outward normal and dS1 the differential solid angle. Hence, 
substituting equation (21) into equation (19), we obtain that 

Pa = - (226ByDBy" - 12DByDaBy - 12oaBDBw)+terms with 7,9,  11, . . . indices, 1 
105 

(22) 
using the well known integrals 

41r 
1 . 3  . 5  . . . (v + 1) n K l n K 2 . .  . n,, d R =  ... K ,  (veven) (23) I sphere 

where AKlK2...KV means all distinct permutations of 6,,,,, and 

nK1nK2 . . . n,, dR = 0 (v odd). I sphere 

Hence, we can find terms with 7,9,  11, . . . indices, i.e. the linear momentum flux up to 
higher orders. 

3. Condusions 

It is obvious that equation (22)  is the general equation of the linear momentum loss 
from an N-body isolated system, where DPBKIKZ-Ky is defined by equation (15) 
(Dionysiou 1974, Papapetrou 1962). At this point we note that the higher multipoles 
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decrease rapidly in magnitude. Also, if the nature of the matter behaves like a perfect 
fluid, then one will be able to define: 

I"@(t) = p(x ' ,  t )x&x; ,  dx', I 
IpSK1( t )  = 1 b(x', t )uhxkx: ,  +p (x ' ,  t)nhu;nK1 - p ( x ' ,  t ) x h x ~ u : , ]  dx' (26) 

and 

instead of equations (12), (13) and (14) respectively. 
Then it is easy to see that we can obtain the snme result, i.e. equation (22). We 

mention, without going into any details, that parallel results to higher orders have been 
obtained by the author for energy and angular momentum loss (Dionysiou 1977a, b). 

Finally, the integrals (5a), (5b) ,  (5c )  and (5d) exist, since we can make the 
assumption that Off is spatially confined. (In the radiation zone we have 0" -ti j  - l /r2.  
Such contributions are ignored in our calculations as a second-order effect (see Misner 
et a1 1973, pp 989-1001, Ehlers et al 1976). 
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